• Home
  • Tutorials
  • Interviews
  • Info Seed
  • Forums
  • Projects
  • Links
  • Contact Us
Digital Electronics
NUMBER SYSTEM
BINARY CODES
TYPES OF BINARY CODES
BCD CODE
EFFICIENCY OF BCD
EXCESS-3 CODE
GRAY CODE
M out of N CODING SCHEME with EFFICIENCY
PARITY BIT
ERROR DETECTION by PARITY
QUESTION
HAMMING CODE (General form)
Relation of PARITY BIT with MESSAGE BITS
ILLUSTRATION-I
ILLUSTRATION-II
BOOLEAN ALGEBRA
K MAPS
COMBINATIONAL CKT
SEQUENTIAL CIRCUITS
TIMING CIRCUITS

 

 

 Excess-3 Code:

It is also known as XS-3. We add 310 or 1102 to the each 4-bit combination of BCD codes to get excess-3 codes. We can see the corresponding Excess-3 codes of each BCD number:

  Decimal              Binary                   BCD                                        Excess-3

0              0000                        0000                                      0011

  1.         0001                       0001                                       0100
  2.         0010                       0010                                       0101
  3.         0011                       0011                                       0110
  4.         0100                       0100                                       0111
  5.         0101                       0101                                       1000
  6.         0110                       0110                                       1001
  7.         0111                       0111                                       1010
  8.         1000                       1000                                       1011
  9.         1001                       1001                                       1100
  10.         1010                       0001 0000                            0001 0011
  11.         1011                       0001 0001                            0001 0100
  12.         1100                       0001 0010                            0001 0101
  13.         1101                       0001 0011                            0001 0110
  14.         1110                       0001 0100                            0001 0111
  15.         1111                       0001 0101                            0001 1000

 

previous next
| Copyright © 2009 exploreroots- All Rights Reserved | Disclaimer |