• Home
  • Tutorials
  • Interviews
  • Info Seed
  • Forums
  • Projects
  • Links
  • Contact Us
Digital Electronics
NUMBER SYSTEM
BINARY CODES
TYPES OF BINARY CODES
BCD CODE
EFFICIENCY OF BCD
EXCESS-3 CODE
GRAY CODE
M out of N CODING SCHEME with EFFICIENCY
PARITY BIT
ERROR DETECTION by PARITY
QUESTION
HAMMING CODE (General form)
Relation of PARITY BIT with MESSAGE BITS
ILLUSTRATION-I
ILLUSTRATION-II
BOOLEAN ALGEBRA
K MAPS
COMBINATIONAL CKT
SEQUENTIAL CIRCUITS
TIMING CIRCUITS

 

M out of N coding scheme:

In this coding scheme we have N total number of bits and fixed M of those bits are 1s and N – M bits are 0s. Hence this scheme is called M out of N coding scheme. It is a type of Error-Detecting coding scheme as if during transmission we have any error in the message we can see that if number of 1s in the message is same. If they are not same then there is an error during transmission. Hence error is detected. 2 out of 5 codes is such an example

Biquinary code (2 out of 7) with weights as 5043210 is such an example.

5           0             4             3              2              1              0           Decimal equivalent

0              1              0              0              0              0           1                       0

0              1              0              0              0              1         0                         1

0              1              0              0              1              0            0                      2

0              1              0              1              0              0              0                    3

0              1              1              0              0              0              0                   4             

1              1              0              0              0              0              0                  5             

1              0              0              0              0              1              0                  6             

1              0              0              0              1              0              0                  7             

1              0              0              1              0              0              0                  8             

1              0              1              0              0              0              0                  9

 

Efficiency:           As we can represent only 10 digits using 7 bits while in binary representation we can represent 27 numbers. Hence

Efficiency = (10/ 128)*100 = 8% (approx.)

 

previous next
| Copyright © 2009 exploreroots- All Rights Reserved | Disclaimer |