Digital Electronics NUMBER SYSTEM BINARY CODES BOOLEAN ALGEBRA K MAPS COMBINATIONAL CKT SEQUENTIAL CIRCUITS INTRODUCTION CLOCK BISTABLE MULTIVIBRATOR DERIVATION of FLIPFLOP circuit RS FLIPFLOP RS FLIPFLOP(NAND IMPLEMENTATION) R'S' FLIPFLOP Clocking RS LATCH Other LATCHes Timing problem in LATCHES ASYNCHRONUS INPUTS Parameters of CLOCK pulse QUESTIONS(LATCH using MUX) EDGE SENSITIVE LATCH (i.e. FLIPFLOP) MASTER SLAVE FF D FF USING MUX TIMING PARAMETERS OF FF CHARACTERISTIC EQUATIONS OF FFs EXCITATION TABLES OF FF INTRO RS FLIPFLOP OTHER FLIPFLOPS CONVERSION OF 1 FF TO OTHER FF as 1bit MEMORY CELL REGISTERS SHIFT REGISTERS RING COUNTER JOHNSON COUNTER QUESTION(Serial Data transfer) ASYNCHRONOUS COUNTERS RIPPLE COUNTER COUNTER other than MOD-2n Designing COUNTER Using K-MAPS QUESTION(MOD 6 counter) QUESTION(Counter design) DOWN COUNTER QUESTION(Counter design) GLITCH SYNCHRONOUS COUNTER COMPARISON B/W SYNC. & ASYNC. COUNTERS CLOCK SKEW QUESTION(Maximum frequency question) QUESTION(Maximum frequency question) MORE QUESTIONS TIMING CIRCUITS

EXCITATION TABLE OF FLIP-FLOPS

Excitation of a flip-flop is actually exact opposite of what a truth table is. The truth table for the flip-flop gives us the output for the given combination of inputs and present output while an excitation table gives the input condition for the given output change.

E.g. As in truth table we say for T flip-flop if input T is 1 and previous Q is 0 then we have output as 1 while in excitation table we are given that present output Q is 0 and new Q is 1 then input T is 1.

Next we write truth table of various flip-flops and then we write their excitation flip-flops.