Digital Electronics NUMBER SYSTEM BINARY CODES BOOLEAN ALGEBRA K MAPS COMBINATIONAL CKT SEQUENTIAL CIRCUITS INTRODUCTION CLOCK BISTABLE MULTIVIBRATOR DERIVATION of FLIPFLOP circuit RS FLIPFLOP RS FLIPFLOP(NAND IMPLEMENTATION) R'S' FLIPFLOP Clocking RS LATCH Other LATCHes Timing problem in LATCHES ASYNCHRONUS INPUTS Parameters of CLOCK pulse QUESTIONS(LATCH using MUX) EDGE SENSITIVE LATCH (i.e. FLIPFLOP) MASTER SLAVE FF D FF USING MUX TIMING PARAMETERS OF FF CHARACTERISTIC EQUATIONS OF FFs EXCITATION TABLES OF FF CONVERSION OF 1 FF TO OTHER FF as 1bit MEMORY CELL REGISTERS SHIFT REGISTERS RING COUNTER JOHNSON COUNTER QUESTION(Serial Data transfer) ASYNCHRONOUS COUNTERS RIPPLE COUNTER COUNTER other than MOD-2n Designing COUNTER Using K-MAPS QUESTION(MOD 6 counter) QUESTION(Counter design) DOWN COUNTER QUESTION(Counter design) GLITCH SYNCHRONOUS COUNTER COMPARISON B/W SYNC. & ASYNC. COUNTERS CLOCK SKEW QUESTION(Maximum frequency question) QUESTION(Maximum frequency question) MORE QUESTIONS TIMING CIRCUITS

QUESTION

Q- Design the ripple counter whose output sequence is represented by the following state diagram.

Ans: As it is a 3-bit counter hence we firstly arrange 3 FFs and now we design the combinational circuit to reset the counter at appropriate point.

Q2         Q1          Q0                          OUTPUT

0              0              0                              0

0              0              1                              1

0              1              0                              1

0              1              1                              1

1              0              0                              1

1              0              1                              1

1              1              0                              1

1              1              1                              0

And using K-map we get the combinational circuit as:

And the equation we get is

Z= Q2. (Q1 bar) + Q0. (Q1bar)

+ Q1. (Q0bar)

= Q2. (Q1 bar) + XOR (Q1, Q0)

OR

We can also have the equation as

Z= Q0. (Q1 bar) + Q1. (Q2bar)

+ Q2. (Q0bar)

And hence can have two types of combinational circuits to achieve the above counter. And the whole circuit with first combinational circuit as: